Copied to
clipboard

G = C42.326D4order 128 = 27

22nd non-split extension by C42 of D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.326D4, (C2xD8):8C4, (C2xQ16):8C4, C4.23(C4xD4), (C2xC8).268D4, (C2xSD16):17C4, C2.19(C8oD8), C4.52(C4:1D4), C8.20(C22:C4), C22.187(C4xD4), C4.205(C4:D4), C23.211(C4oD4), C22.19(C4:D4), (C22xC8).495C22, C22.1(C4.4D4), (C22xC4).1414C23, (C2xC42).1078C22, (C2xM4(2)).211C22, C2.26(C24.3C22), (C2xC4xC8):27C2, (C2xC4wrC2):20C2, (C2xC4oD8).2C2, (C2xC8).186(C2xC4), (C2xC4).742(C2xD4), C4.42(C2xC22:C4), (C2xQ8).98(C2xC4), (C2xC8.C4):10C2, (C2xD4).113(C2xC4), (C22xC8):C2:24C2, (C2xC4).605(C4oD4), (C2xC4).428(C22xC4), (C2xC4oD4).39C22, SmallGroup(128,706)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C42.326D4
C1C2C4C2xC4C22xC4C22xC8C2xC4xC8 — C42.326D4
C1C2C2xC4 — C42.326D4
C1C2xC4C22xC8 — C42.326D4
C1C2C2C22xC4 — C42.326D4

Generators and relations for C42.326D4
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=b-1, ab=ba, ac=ca, dad-1=a-1b-1, bc=cb, bd=db, dcd-1=c3 >

Subgroups: 292 in 150 conjugacy classes, 56 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, D4, Q8, C23, C23, C42, C42, C2xC8, C2xC8, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C4xC8, C22:C8, C4wrC2, C8.C4, C2xC42, C22xC8, C2xM4(2), C2xD8, C2xSD16, C2xQ16, C4oD8, C2xC4oD4, C2xC4xC8, (C22xC8):C2, C2xC4wrC2, C2xC8.C4, C2xC4oD8, C42.326D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C4oD4, C2xC22:C4, C4xD4, C4:D4, C4.4D4, C4:1D4, C24.3C22, C8oD8, C42.326D4

Smallest permutation representation of C42.326D4
On 32 points
Generators in S32
(1 3 5 7)(2 4 6 8)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)(17 19 21 23)(18 20 22 24)
(1 23 5 19)(2 24 6 20)(3 17 7 21)(4 18 8 22)(9 30 13 26)(10 31 14 27)(11 32 15 28)(12 25 16 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10 19 27 5 14 23 31)(2 13 20 30 6 9 24 26)(3 16 21 25 7 12 17 29)(4 11 22 28 8 15 18 32)

G:=sub<Sym(32)| (1,3,5,7)(2,4,6,8)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,19,21,23)(18,20,22,24), (1,23,5,19)(2,24,6,20)(3,17,7,21)(4,18,8,22)(9,30,13,26)(10,31,14,27)(11,32,15,28)(12,25,16,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,19,27,5,14,23,31)(2,13,20,30,6,9,24,26)(3,16,21,25,7,12,17,29)(4,11,22,28,8,15,18,32)>;

G:=Group( (1,3,5,7)(2,4,6,8)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,19,21,23)(18,20,22,24), (1,23,5,19)(2,24,6,20)(3,17,7,21)(4,18,8,22)(9,30,13,26)(10,31,14,27)(11,32,15,28)(12,25,16,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,19,27,5,14,23,31)(2,13,20,30,6,9,24,26)(3,16,21,25,7,12,17,29)(4,11,22,28,8,15,18,32) );

G=PermutationGroup([[(1,3,5,7),(2,4,6,8),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27),(17,19,21,23),(18,20,22,24)], [(1,23,5,19),(2,24,6,20),(3,17,7,21),(4,18,8,22),(9,30,13,26),(10,31,14,27),(11,32,15,28),(12,25,16,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10,19,27,5,14,23,31),(2,13,20,30,6,9,24,26),(3,16,21,25,7,12,17,29),(4,11,22,28,8,15,18,32)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4N4O4P8A···8P8Q8R8S8T
order1222222244444···4448···88888
size1111228811112···2882···28888

44 irreducible representations

dim11111111122222
type++++++++
imageC1C2C2C2C2C2C4C4C4D4D4C4oD4C4oD4C8oD8
kernelC42.326D4C2xC4xC8(C22xC8):C2C2xC4wrC2C2xC8.C4C2xC4oD8C2xD8C2xSD16C2xQ16C42C2xC8C2xC4C23C2
# reps112211242262216

Matrix representation of C42.326D4 in GL4(F17) generated by

16000
01600
00130
0001
,
1000
0100
0040
0004
,
4200
01300
0080
0002
,
5800
141200
0002
00150
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,13,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4],[4,0,0,0,2,13,0,0,0,0,8,0,0,0,0,2],[5,14,0,0,8,12,0,0,0,0,0,15,0,0,2,0] >;

C42.326D4 in GAP, Magma, Sage, TeX

C_4^2._{326}D_4
% in TeX

G:=Group("C4^2.326D4");
// GroupNames label

G:=SmallGroup(128,706);
// by ID

G=gap.SmallGroup(128,706);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,100,2019,248,2804,172,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b^-1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<