Copied to
clipboard

G = C42.326D4order 128 = 27

22nd non-split extension by C42 of D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.326D4, (C2×D8)⋊8C4, (C2×Q16)⋊8C4, C4.23(C4×D4), (C2×C8).268D4, (C2×SD16)⋊17C4, C2.19(C8○D8), C4.52(C41D4), C8.20(C22⋊C4), C22.187(C4×D4), C4.205(C4⋊D4), C23.211(C4○D4), C22.19(C4⋊D4), (C22×C8).495C22, C22.1(C4.4D4), (C22×C4).1414C23, (C2×C42).1078C22, (C2×M4(2)).211C22, C2.26(C24.3C22), (C2×C4×C8)⋊27C2, (C2×C4≀C2)⋊20C2, (C2×C4○D8).2C2, (C2×C8).186(C2×C4), (C2×C4).742(C2×D4), C4.42(C2×C22⋊C4), (C2×Q8).98(C2×C4), (C2×C8.C4)⋊10C2, (C2×D4).113(C2×C4), (C22×C8)⋊C224C2, (C2×C4).605(C4○D4), (C2×C4).428(C22×C4), (C2×C4○D4).39C22, SmallGroup(128,706)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.326D4
C1C2C4C2×C4C22×C4C22×C8C2×C4×C8 — C42.326D4
C1C2C2×C4 — C42.326D4
C1C2×C4C22×C8 — C42.326D4
C1C2C2C22×C4 — C42.326D4

Generators and relations for C42.326D4
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=b-1, ab=ba, ac=ca, dad-1=a-1b-1, bc=cb, bd=db, dcd-1=c3 >

Subgroups: 292 in 150 conjugacy classes, 56 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C2×C8, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C22⋊C8, C4≀C2, C8.C4, C2×C42, C22×C8, C2×M4(2), C2×D8, C2×SD16, C2×Q16, C4○D8, C2×C4○D4, C2×C4×C8, (C22×C8)⋊C2, C2×C4≀C2, C2×C8.C4, C2×C4○D8, C42.326D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C41D4, C24.3C22, C8○D8, C42.326D4

Smallest permutation representation of C42.326D4
On 32 points
Generators in S32
(1 3 5 7)(2 4 6 8)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)(17 19 21 23)(18 20 22 24)
(1 23 5 19)(2 24 6 20)(3 17 7 21)(4 18 8 22)(9 30 13 26)(10 31 14 27)(11 32 15 28)(12 25 16 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10 19 27 5 14 23 31)(2 13 20 30 6 9 24 26)(3 16 21 25 7 12 17 29)(4 11 22 28 8 15 18 32)

G:=sub<Sym(32)| (1,3,5,7)(2,4,6,8)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,19,21,23)(18,20,22,24), (1,23,5,19)(2,24,6,20)(3,17,7,21)(4,18,8,22)(9,30,13,26)(10,31,14,27)(11,32,15,28)(12,25,16,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,19,27,5,14,23,31)(2,13,20,30,6,9,24,26)(3,16,21,25,7,12,17,29)(4,11,22,28,8,15,18,32)>;

G:=Group( (1,3,5,7)(2,4,6,8)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,19,21,23)(18,20,22,24), (1,23,5,19)(2,24,6,20)(3,17,7,21)(4,18,8,22)(9,30,13,26)(10,31,14,27)(11,32,15,28)(12,25,16,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,19,27,5,14,23,31)(2,13,20,30,6,9,24,26)(3,16,21,25,7,12,17,29)(4,11,22,28,8,15,18,32) );

G=PermutationGroup([[(1,3,5,7),(2,4,6,8),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27),(17,19,21,23),(18,20,22,24)], [(1,23,5,19),(2,24,6,20),(3,17,7,21),(4,18,8,22),(9,30,13,26),(10,31,14,27),(11,32,15,28),(12,25,16,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10,19,27,5,14,23,31),(2,13,20,30,6,9,24,26),(3,16,21,25,7,12,17,29),(4,11,22,28,8,15,18,32)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4N4O4P8A···8P8Q8R8S8T
order1222222244444···4448···88888
size1111228811112···2882···28888

44 irreducible representations

dim11111111122222
type++++++++
imageC1C2C2C2C2C2C4C4C4D4D4C4○D4C4○D4C8○D8
kernelC42.326D4C2×C4×C8(C22×C8)⋊C2C2×C4≀C2C2×C8.C4C2×C4○D8C2×D8C2×SD16C2×Q16C42C2×C8C2×C4C23C2
# reps112211242262216

Matrix representation of C42.326D4 in GL4(𝔽17) generated by

16000
01600
00130
0001
,
1000
0100
0040
0004
,
4200
01300
0080
0002
,
5800
141200
0002
00150
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,13,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4],[4,0,0,0,2,13,0,0,0,0,8,0,0,0,0,2],[5,14,0,0,8,12,0,0,0,0,0,15,0,0,2,0] >;

C42.326D4 in GAP, Magma, Sage, TeX

C_4^2._{326}D_4
% in TeX

G:=Group("C4^2.326D4");
// GroupNames label

G:=SmallGroup(128,706);
// by ID

G=gap.SmallGroup(128,706);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,100,2019,248,2804,172,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b^-1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽